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Abstract. We assess the suitability of a recent high-resolution central scheme developed by Kurganov & Tadmor (2000) for the
solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in
the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime.
Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical
application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and
cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory
results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon
Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straight-
forwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known,
or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally,
we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other
high-resolution central schemes which have recently been reported in the literature.
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1. Introduction

Relativistic (magneto) hydrodynamical flows are present in
many astrophysical scenarios involving compact objects such
as neutron stars or black holes. The production of relativis-
tic radio jets in active galactic nuclei, with flow velocities as
large as 99% of the speed of light, involves an accretion disk
around a rotating black hole (Begelman et al. 1984). The ex-
plosive collapse of the core of a massive star to a neutron star
in type II/Ib/Ic supernovae contains fluid moving at relativistic
speeds and strong shocks (see, e.g., Müller 1998, and refer-
ences therein). Scenarios such as the collapse of massive stars
to black holes in collapsars or coalescing neutron star binaries
have been proposed as possible candidates for powering γ-ray
bursts, with bulk Lorentz factors larger than about 100 (see,
e.g., Piran 1999; Aloy et al. 2000, and references therein).

A powerful way to improve our understanding of the phys-
ical mechanisms which operate in those astrophysical systems
is through (magneto) hydrodynamical relativistic simulations.
Numerical simulations of relativistic flows, both in Minkowski
spacetime and in strong gravitational field scenarios, have re-
ceived considerable attention in recent years (for a compre-
hensive list of references the reader is addressed to the recent
reviews of Martí & Müller 2003; and Font 2003). A consen-
sus that has slowly emerged is that a class of conservative

finite-difference schemes based upon Riemann solvers is par-
ticularly well suited to solve the hyperbolic system of the gen-
eral relativistic hydrodynamic equations. Such schemes are
commonly known as Godunov-type schemes, a class of the so-
called high-resolution shock-capturing (HRSC) schemes (Toro
1997). The knowledge of the characteristic speeds of the sys-
tem of equations, i.e., the eigenvalues of the Jacobian matrices
associated with the fluxes of the equations, together with, in
most cases, the corresponding eigenvectors, is the key building
block of any Riemann solver. A hydrodynamics code must be
able, in particular, to resolve complex flows in which strong
interacting shocks could arise. HRSC schemes written in con-
servation form have proven to fulfill the important requirement
of capturing the profiles of strong discontinuities in a few nu-
merical zones without introducing spurious oscillations.

The extension of HRSC schemes based on Riemann solvers
from Newtonian hydrodynamics to general relativity was first
discussed by Martí et al. (1991) where one-dimensional test
simulations were performed. Further contributions towards
completely multidimensional formulations followed, either
adopting the 3+1 splitting of the spacetime or fully covari-
ant formalisms (Eulderink & Mellema 1995; Banyuls et al.
1997; Font et al. 2000; Papadopoulos & Font 2000; Ibáñez
et al. 2001). Nowadays, many of the astrophysical scenar-
ios mentioned above have been investigated numerically using
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the equations of relativistic hydrodynamics and state-of-the-art
HRSC schemes (see, e.g. references in Martí & Müller 2003;
and Font 2003). Furthermore, there is an increasing list of rel-
ativistic Riemann solvers available in the literature (Martí &
Müller 2003), including the exact Riemann solver in the spe-
cial relativistic limit (Martí & Müller 1994; Pons et al. 2000).

The knowledge of the characteristic structure of a hyper-
bolic system of conservation laws is to be recommended, ir-
respective of the particular algorithm to solve it numerically.
From the theoretical point of view such knowledge makes it
possible to prescribe physically consistent boundary conditions
and helps to understand the physical properties of the system.
By knowing the characteristic structure of the relativistic hy-
drodynamics equations it was possible to find the exact solu-
tion to the Riemann problem, both one-dimensional (Martí &
Müller 1994) and multidimensional (Pons et al. 2000). As a
result, it was possible to know how the tangential velocities
modify the flow solution in relativity in comparison with the
Newtonian case (Pons et al. 2000; Rezzolla & Zanotti 2002;
Rezzolla et al. 2003).

On the other hand, an alternative approach to upwind meth-
ods for solving hyperbolic systems of conservation laws by
means of non-oscillatory high-order symmetric total-variation
diminishing (TVD) schemes emerged in the mid 1980s (Davis
1984; Roe 1984; Yee 1987; Nessyahu & Tadmor 1990)
(see also Yee 1989; Toro 1997, and references therein).
Broadly speaking these approaches are based either on the
Lax-Wendroff second-order scheme with additional dissipative
terms (Davis 1984; Roe 1984; Yee 1987) or on non-oscillatory
high-order extensions of the Lax-Friedrichs first-order central
scheme (Nessyahu & Tadmor 1990). One of the nicest prop-
erties of this approach is that it exploits the conservation form
of the Lax-Wendroff or Lax-Friedrichs schemes to yield the
correct propagation speeds of all nonlinear waves appearing
in the solution. Furthermore, this procedure sidesteps the use
of Riemann solvers, which results in enhanced computational
efficiency in multidimensional problems. Its use is, therefore,
not limited to only those systems of equations where the char-
acteristic information is explicitly known or to systems where
the solution of the Riemann problem is prohibitively expen-
sive to compute. This approach has rapidly developed during
the last decade to reach a mature status where a number of
straightforward central schemes of high order can be applied to
any nonlinear hyperbolic system of conservation laws. In par-
ticular, the typical results obtained for the Euler equations of
Newtonian hydrodynamics show a quality comparable to that
of HRSC schemes at the expense of a small loss of sharpness of
the solution at discontinuities (Toro 1997). An up-to-date sum-
mary of the status and applications of this approach is discussed
in Toro (1997); Kurganov & Tadmor (2000); Tadmor (2001).

In recent years there have been various successful attempts
to apply high-order central schemes to solve the relativis-
tic (magneto) hydrodynamics equations (Koide et al. 1996;
Del Zanna & Bucciantini 2002; Anninos & Fragile 2003). In
the context of special and general relativistic magnetohydrody-
namics (MHD), Koide and coworkers (Koide et al. 1998; Koide
et al. 2002) applied a second-order central scheme with non-
linear dissipation developed by Davis (1984) to the study of

black hole accretion and formation of relativistic jets. More re-
cently Del Zanna & Bucciantini (2002) assessed a third-order
convex essentially non-oscillatory central scheme in multidi-
mensional special relativistic hydrodynamics, later extended to
relativistic MHD in Del Zanna et al. (2003). These authors ob-
tained results as accurate as those of upwind HRSC schemes
in standard tests (shock tubes, shock reflection test). Yet an-
other central scheme has lately been considered by Anninos &
Fragile (2003) in one-dimensional special and general relativis-
tic hydrodynamics, where results similar to those reported by
Del Zanna & Bucciantini (2002) are discussed.

The aim of this paper is to assess, as a proof of principle
and motivated by the recent stir of activity on this topic, the va-
lidity of a particularly efficient finite-difference central scheme
written in conservation form for the solution of the relativis-
tic hydrodynamic equations. This scheme was developed by
Kurganov & Tadmor (2000) and has proven very accurate for
solving different hyperbolic systems of conservation laws, in-
cluding the Newtonian hydrodynamics equations. To reach our
aim we perform a number of one- and two-dimensional stan-
dard numerical experiments in flat spacetime, such as shock
tubes and the relativistic version of the so-called flat-faced step
test (Emery 1968). We also present an astrophysical application
of our adopted central scheme, namely the propagation of a rel-
ativistic jet. The simulations show the remarkable capabilities
of the numerical scheme of yielding satisfactory results, com-
parable to those obtained by HRSC schemes based on Riemann
solvers, even well inside the ultrarelativistic regime.

The organization of the paper is as follows: in Sect. 2 we
remind the reader of the form of the system of equations of spe-
cial relativistic hydrodynamics. Section 3 describes briefly the
numerical scheme we use. Next, in Sects. 4 and 5 we present
the results of our one- and two-dimensional simulations, re-
spectively. Section 6 contains a quantitative comparison be-
tween the central scheme and various of the most widely used
Riemann solver-based HRSC schemes available. Finally, the
summary of our investigation is given in Sect. 7. In all simula-
tions presented we choose units such that the speed of light c is
unity.

2. Relativistic hydrodynamic equations

In Minkowski spacetime and Cartesian coordinates (t, xi), the
local conservation laws describing the motion of a relativistic
fluid can be cast as a first-order flux-conservative system of
the form

∂U(w)
∂t

+
∂ f i(w)
∂xi

= 0. (1)

(Latin indices run from 1 to 3.) In the above equations U and f i

are, respectively, the state vector and the flux vector along di-
rection xi and are defined as

U(w) =
(
D, S i, τ

)
, (2)

f i(w) =
(
Dvi, S jvi + pδi j, S i − Dvi

)
. (3)

Here, δi j is the Kronecker delta, p is the fluid thermal pressure
related to the rest-mass density ρ and specific internal energy
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density ε via an equation of state, p = p(ρ, ε), and vi is the
3-velocity. The definitions of the evolved quantities (relativis-
tic densities of mass, momentum and energy) in terms of the
primitive variables w = (ρ, vi, ε) are

D = ρW, (4)

S i = ρhW2vi, (5)

τ = ρhW2 − p − D, (6)

where h is the specific enthalpy, h = 1 + ε + p/ρ, and W is
the Lorentz factor satisfying W ≡ u0 = 1/

√
1 − v2 with v2 =

vivi. The 3-velocity components are obtained from the spatial
components of the 4-velocity as vi = ui/u0.

3. Numerical scheme

The time update of system (1) from tn to tn+1 is done using an
algorithm written in conservation form

Un+1
i = Un

i +
∆t
∆x

(
Fi−1/2 − Fi+1/2

)
, (7)

where index i labels the numerical cells. The quantities
Fi−1/2 and Fi+1/2 are the numerical fluxes at the cell inter-
faces i−1/2 and i+1/2, respectively. In Riemann solver-based
HRSC schemes those numerical fluxes are computed by solv-
ing a family of local Riemann problems. Central schemes such
as Lax-Friedrichs or Richtmyer avoid this.

In Kurganov & Tadmor (2000), the authors first construct a
fully-discrete central scheme by building an intermediate mesh
of variable cell length, making use of the local speed of propa-
gation at each cell interface ai+1/2, defined by

ai+1/2 = max

{
ρ

(
∂ f
∂U

(
UL

i+1

))
, ρ

(
∂ f
∂U

(
UR

i

))}
, (8)

where ρ(A) = maxi(|λi(A)|), λi(A) being the eigenvalues of
the Jacobian matrix A ≡ ∂ f/∂U. In addition, superscripts L
and R in the above equation stand for the reconstructed values
of U at the left and right sides of the corresponding numeri-
cal cell (i + 1 and i, respectively). These are computed from
the reconstructed values of the vector of primitive variables
defined previously. In particular we have implemented in our
numerical code the third-order reconstruction procedures pro-
vided by both the PPM scheme (Colella & Woodward 1984)
and the PHM scheme (Marquina 1999).

In order to avoid the computation of the Jacobian matrix of
system (1), one can calculate the partial derivatives of the flux
vector with respect to the state variables numerically (see Liu
& Tadmor 1998; Jiang & Tadmor 1998). The construction of
the resulting method is not simple, and it is only second order
accurate in space. Its extension to higher spatial order is quite
involved and for the equations of relativistic hydrodynamics
many intermediate calculations are necessary due to the root-
finding procedure needed to recover the primitive variables
from the conserved quantities after a time update (Martí &
Müller 2003). The final numerical flux depends on ai+1/2 and on
the partial derivative of the flux vector with respect to xi, which

can again be calculated numerically (see Kurganov & Tadmor
2000, for details). Preliminary results in one-dimensional sim-
ple tests in Minkowski spacetime are far more inaccurate than
the ones obtained when using approximate Riemann solvers.

However, this first version of the scheme admits a semi-
discrete form, by setting ∆t → 0. All new variables con-
structed on the intermediate mesh of the original scheme van-
ish, resulting in a much simpler and robust scheme. Now, we
can introduce time differencing again by applying a standard
time discretization such as a Runge-Kutta one. In this way one
can obtain a fully-discrete, simple, robust, and characteristic-
information-free central scheme. Hereafter, we will refer to this
scheme as Tadmor’s scheme, with a numerical flux function
given by

Fi+1/2 =
1
2

[
f
(
UL

i+1

)
+ f

(
UR

i

)]
−

ai+ 1
2

2

[
UL

i+1 − UR
i

]
. (9)

This numerical flux depends only on the local propagation
speeds ai+1/2 and, due to its simple form, it can be implemented
and extended to any spatial order straightforwardly. The reader
is addressed to the original article of Kurganov & Tadmor
(2000) for a deeper description of the numerical scheme.

4. One-dimensional tests

4.1. Riemann problems

A shock tube problem is a particular Riemann problem in
which the states on both sides of a given interface are at rest.
The thermodynamical variables of the fluid are discontinuous.
When the interface is removed the evolution results in four con-
stant states separated by three elementary waves, a rarefaction,
a contact discontinuity and a shock wave. The exact solution of
the Riemann problem in relativistic hydrodynamics for vanish-
ing tangential speeds can be found in Martí & Müller (1994).
Compared to Newtonian hydrodynamics, in relativity the non-
linear velocity addition yields a curved velocity profile for the
rarefaction wave, whereas the Lorentz contraction narrows the
constant state in between the shock wave and the contact dis-
continuity. These effects become particularly strong in the ul-
trarelativistic regime, especially the latter. Shock tube experi-
ments in relativistic hydrodynamics have been considered by
many authors to calibrate numerical codes. An up-to-date sum-
mary of these efforts is presented in Martí & Müller (2003).

We present simulations of four Riemann problems:
cases (a) and (c) in Martí & Müller (1994), with the forma-
tion of two shocks and two rarefaction waves, respectively, and
the shock tube problems 1 and 2 of Martí & Müller (1996),
for which the solution consists of a rarefaction wave moving to
the left and a shock wave moving to the right, with a contact
discontinuity in between. The one-dimensional computational
domain extends from x = 0 to x = 1. At t = 0 the interface
is located at x = 0.5. We use an ideal fluid equation of state,
p = (Γ − 1)ρε, with Γ = 4/3 for the first problem and Γ = 5/3
for the rest.

We show results obtained using Tadmor’s scheme to-
gether with a third order Runge-Kutta time discretization
and the spatial cell reconstruction with which we obtain the
best results, alternatively, the parabolic reconstruction used
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Table 1. Values of the PPM reconstruction parameters used in some
of the simulations presented in Sects. 4 and 5.

Test K0 η(1) η(2) ε(1) ω(1) ω(2) ε(2)

Problem 2 1.0 5.0 0.05 0.1 0.52 10.0 0.5

Problem 3 1.0 50.0 0.05 0.1 0.52 10.0 0.5

Problem 4 1.0 50.0 0.05 0.1 0.52 10.0 0.5

Problem 5 1.0 5.0 0.05 0.1 0.52 10.0 0.0001

Problem 6 1.0 5.0 0.1 0.1 0.52 10.0 0.5

Jet 1.0 1.0 0.05 0.1 0.52 5.0 0.1

in the PPM scheme (Colella & Woodward 1984; Martí &
Müller 1996), or the hyperbolic one used in the PHM scheme
(Marquina 1994). The particular PPM parameters we choose
for the various tests are reported in Table 1 (see the original
article by Colella & Woodward 1984, for information on the
meaning of these parameters). For an effective comparison with
HRSC methods based on (approximate) Riemann solvers, we
perform the same tests with three of them (HLLE, Roe, and
Marquina), implementing them together in our code in the way
explained in Aloy et al. (1999). The basic algorithms of each
of these schemes can be found in e.g. Martí & Müller (2003).
We note that while we employ throughout the term “Roe” we
are actually referring to a Roe-type scheme, in the sense that
we use arithmetic averaging in the numerical flux computa-
tion instead of Roe-averaging. Finally, in all figures presented
in this section the solid lines indicate the exact solution and
the different symbols (plus signs, crosses, and circles) indicate
the numerical solution for the pressure, density and velocity,
respectively.

4.1.1. Problem 1

The initial states are pL = 1.0, ρL = 1.0, vL = 0.9 (left) and
pR = 10.0, ρR = 1.0, vR = 0.0 (right). Figure 1 shows the nor-
malized profiles of the pressure, density and velocity at time
t = 0.4 on an equally spaced grid of 400 zones. The top panel
corresponds to Tadmor’s scheme and the bottom panel to the
HLLE Riemann solver. In both cases we use PHM reconstruc-
tion and a CFL number of 0.5. At t = 0.4 the left shock wave
is located at x = 0.465, the contact discontinuity at x = 0.6 and
the right shock is located at x = 0.76.

The conservative central scheme we are using captures
properly the location and propagation speeds of the different
waves, with an accuracy comparable to the HLLE Riemann
solver (results with other approximate Riemann solvers, not
shown in the figure, are also similar). In particular the sharp
resolution attained at the discontinuities is worth mentioning,
especially at the shocks which are resolved with the same
number of points in either scheme, thanks to the use of the
PHM third-order reconstruction. The small amplitude oscilla-
tions observed behind the left shock entirely disappear when
the value of the CFL parameter is lowered to 0.3.

Fig. 1. Tadmor’s scheme (upper panel) and HLLE (lower) in the rela-
tivistic shock tube problem 1 at t = 0.4 using CFL = 0.5 and PHM spa-
tial reconstruction. Normalized profiles of density, pressure and ve-
locity for the computed and exact (solid lines) solutions on an equally
spaced grid of 400 zones.

4.1.2. Problem 2

The initial states are pL = 10.0, ρL = 1.0, vL = −0.6 (left) and
pR = 20.0, ρR = 10.0, vR = 0.5 (right). Figure 2 shows the nor-
malized profiles of the pressure, density and velocity at time
t = 0.4 on an equally spaced grid of 400 zones. The top panel
corresponds to Tadmor’s scheme and the bottom one to Roe’s
approximate Riemann solver. We use PPM cell reconstruction
with specific parameters given in Table 1. Both schemes cap-
ture properly the location and propagation speeds of the dif-
ferent waves. Note in particular the fine performance of both
methods at the contact discontinuity, a feature due to the use of
the PPM reconstruction.

4.1.3. Problem 3

The initial states are pL = 13.3, ρL = 10.0 (left) and pR =

0.0, ρR = 1.0 (right). Figure 3 shows the normalized profiles
of the pressure, density and velocity at time t = 0.35 on an
equally spaced grid of 400 zones for Tadmor’s scheme (top
panel) and Marquina’s flux formula (bottom panel). At t = 0.35
the shock wave is located at x = 0.79, the contact discontinu-
ity at x = 0.75 and the left and right corners of the rarefaction
wave are located at x = 0.25 and x = 0.56, respectively. The
fluid velocity behind the shock is 0.714. Figure 3 clearly shows
that the location and propagation speeds of the different waves
appearing in the solution are well captured with both schemes.
Furthermore, the jumps in the different variables, in particular
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Fig. 2. Tadmor’s scheme (upper panel) and Roe (lower) in the rela-
tivistic shock tube problem 2 at t = 0.4, using CFL= 0.5 and PPM spa-
tial reconstruction (see Table 1 for the specific values of the PPM pa-
rameters used). Normalized profiles of density, pressure and velocity
for the computed and exact (solid lines) solutions on an equally spaced
grid of 400 zones.

the constant state visible in the density in between the shock
and the contact discontinuity, are also well resolved.

The grid resolution employed in our simulations allows a
direct comparison with the results reported in Martí & Müller
(1996), who used a relativistic extension of the PPM method
(Colella & Woodward 1984) together with the exact relativistic
Riemann solver, as well as with those of Donat et al. (1998),
who employed a HRSC scheme based on Marquina’s flux for-
mula (Donat & Marquina 1996) and different high-order cell-
reconstruction schemes. In addition we can compare our results
with those of Del Zanna & Bucciantini (2002) and Anninos &
Fragile (2003) obtained with high-order central schemes dif-
ferent to the one we use. In all cases, the quality of our com-
puted solution is similar to that obtained by those authors. Note
in particular the sharp resolution attained at the discontinu-
ities, especially at the contact discontinuity, thanks to the use
of the PPM reconstruction with the specific parameters shown
in Table 1. As a comparison the third-order ENO scheme used
by Donat et al. (1998) shows more numerical diffusion than
Tadmor’s scheme when resolving the contact discontinuity and
a similar diffusion to what we obtain for the case of the shock
wave (see Fig. 4 in Donat et al. 1998). Similarly, the captur-
ing of the contact discontinuity with the central schemes of
Del Zanna & Bucciantini (2002) (see their Fig. 1) and Anninos
& Fragile (2003) (see their Fig. 2) also appears more diffused
than in what we find.

Fig. 3. Tadmor’s scheme (upper panel) and Marquina’s flux formula
(lower) in the relativistic shock tube problem 3 at t = 0.35 us-
ing CFL = 0.5 and PPM spatial reconstruction (see Table 1 for de-
tails). Normalized profiles of density, pressure and velocity for the
computed and exact (solid lines) solutions on an equally spaced grid
of 400 zones.

4.1.4. Problem 4

The initial states are now pL = 103, ρL = 1.0 (left) and pR =

10−2, ρR = 1.0 (right). Figure 4 shows the normalized profiles
of the pressure, density and velocity at time t = 0.4 on an
equidistant grid of 400 zones, obtained when using Tadmor’s
scheme (top) and HLLE (bottom) together with the PPM spa-
tial reconstruction (see parameters in Table 1). The flow pattern
is similar to that of Problem 3 but the relativistic effects make
its computation much more exigent. The initial pressure jump
of five orders of magnitude leads to the formation of a thin
and dense shell bounded by a leading shock front and a trailing
contact discontinuity – a blast wave. The post-shock velocity
is 0.96 (W ∼ 3.5) while the shock speed is 0.986 (W ∼ 6).
Resolving the thin density plateau is a demanding test for any
numerical scheme.

As in Problem 3 we see that the central scheme we use
gives the correct propagation speeds of the different waves,
with an accuracy comparable to that of HRSC schemes based
on Riemann solvers for the same grid resolution. By direct
comparison of our results with those reported in Martí &
Müller (1996), Donat et al. (1998), Del Zanna & Bucciantini
(2002) and Anninos & Fragile (2003) we see that the over-
all agreement is similar or better. In particular, if we com-
pare the maximum value obtained for the density in the thin
shell, our central scheme achieves 76% of the exact result.
The agreement found between a Godunov-type scheme such
as HLLE and a central scheme such as Tadmor is remarkable.
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Fig. 4. Tadmor’s scheme (upper panel) and HLLE (lower) in the rela-
tivistic shock tube problem 4 at t = 0.4 using CFL = 0.4 and PPM spa-
tial reconstruction (see Table 1 for details). Normalized profiles of
density, pressure and velocity for the computed and exact (solid lines)
solutions on an equally spaced grid of 400 zones.

The diffusion observed in the shock wave is essentially iden-
tical to what is found in the previous references, while that of
the contact discontinuity is now considerably smaller due to
the steepening step included in the PPM routines. With a grid
of 400 zones the constant state between the shock and the con-
stant discontinuity cannot yet be achieved, as in Martí & Müller
(1996), Donat et al. (1998), Del Zanna & Bucciantini (2002),
and Anninos & Fragile (2003). To get fully converged results
with Tadmor’s scheme one needs to use an equidistant grid of
about 1400 zones, a smaller number than what is reported in
Donat et al. (1998). The grid requirements can obviously be
reduced by employing adaptive mesh refinement in the region
around the dense shell.

4.2. Problem 5: Shock reflection test

In this test an ideal cold fluid (ε1 = 0) with velocity v1 hits
a wall. The fluid is thus compressed and heats up, producing
a shock that starts to propagate off the wall, leaving the fluid
behind at rest (v2 = 0). Subscripts 1 and 2 stand for the fluid
states ahead of and behind the shock, respectively. The post-
shock density is an increasing function of the initial flow ve-
locity. The compression ratio σ ≡ ρ2/ρ1 satisfies

σ =
Γ + 1
Γ − 1

+
Γ

Γ − 1
ε2, (10)

where ε2 = W1 − 1. In the Newtonian limit this compression
ratio is independent of the inflow velocity. On the contrary, in

Fig. 5. Tadmor’s scheme in the relativistic shock reflection test using
PPM reconstruction (see Table 1 for details). Normalized profile of
the pressure and the density for a time when the shock has propagated
0.5 units off the wall. The solid line is the exact solution. The symbols
indicate the numerical solution obtained with a grid of 100 zones and
CFL = 0.4.

the ultrarelativistic limit the density of the gas behind the shock
is unbounded (σ ∼ W1).

In our setup the computational domain covers the inter-
val [0,1] and the wall is placed at x = 0. We use a computa-
tional grid with 100 zones and an ideal fluid equation of state
with Γ = 4/3. As usual in the simulations of this test the spe-
cific internal energy of the incoming fluid is set to a negligibly
small initial value, ε1 = 10−10.

Figure 5 shows the normalized profiles of the pressure and
the density at a time when the shock has propagated 0.5 units
off the wall. The profiles shown correspond to an initial ve-
locity v1 = −0.99999 (W1 ∼ 224). The solid line is the exact
solution and the crosses and circles indicate the numerical one
for the pressure and the density, respectively. Tadmor’s scheme
is capable of resolving accurately the shock location and the as-
sociated huge jump. In comparison with results obtained with
HRSC schemes based on Riemann solvers (Martí & Müller
1996; Donat et al. 1998; Aloy et al. 1999) or other central
schemes (Del Zanna & Bucciantini 2002; Anninos & Fragile
2003), the numerical diffusion at the shock present in our re-
sults is similar. In Fig. 8 of Donat et al. (1998) the shock is re-
solved in 5–6 zones, as in our central scheme, while in Fig. 2 of
Martí & Müller (1996) it is captured in only 3 zones. In particu-
lar, in the results of Del Zanna & Bucciantini (2002), who only
simulate a moderately “cold” gas (p = 0.01) and use 250 zones,
the corner of the shock wave is not as sharply resolved as in
our simulation (see also Fig. 9 of Anninos & Fragile 2003).
In addition, the typical overheating error present in the density
near the wall is ∼1%, somewhat lower than the one obtained in
Donat et al. (1998) and Del Zanna & Bucciantini (2002). We
note once again that our results are obtained using the PPM re-
construction procedure (see Table 1 for details).

As already shown in previous works (Del Zanna &
Bucciantini 2002; Anninos & Fragile 2003), high-order cen-
tral schemes are indeed able to achieve results comparable to
Riemann solver-based schemes in the ultrarelativistic limit (we
can reach arbitrarily large Lorentz factors e.g. W1 ∼ 7070,
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corresponding to v = −0.99999999c). The most important
property which allows central schemes such as the one pre-
sented here to succeed in the ultrarelativistic regime seems to
be, in retrospect, the conservation form of the scheme, some-
thing which was not taken into account in the pioneer investiga-
tions in (ultra) relativistic hydrodynamics (Norman & Winkler
1986).

4.3. Problem 6: Shock tube tests with non-zero
tangential velocities

All shock tube problems we have considered so far involve only
the velocity normal to the initial discontinuity. A higher level of
complexity can be achieved by including the two other velocity
components vy and vz, which can be considered together as v⊥,
the velocity component defined on the perpendicular plane to
the x-axis. As shown by Pons et al. (2000), where the exact
solution of such a “multidimensional” Riemann problem was
derived, the introduction of this new variable changes the final
result of the initial Riemann problem.

Following the previous reference we have simulated the
propagation of a relativistic blast wave (see Sect. 4.1.4). The
final solution depends on the initial value of the tangential ve-
locities, which can be taken as free parameters (see Pons et al.
2000, for details). In our particular case we choose vL⊥ = 0,
vR⊥ = 0.99. We use the same configuration as in Sect. 4.1 for the
spatial domain and the equation of state.

In Fig. 6 we plot the results obtained using Tadmor’s
scheme and HLLE approximate Riemann solver. As in the pre-
vious tests we use a third order Runge-Kutta time discretization
and the PPM scheme for the spatial cell-reconstruction (see
Table 1 for details on the PPM parameters). The solution plot-
ted in Fig. 6 corresponds to time t = 0.40, and it shows the dis-
tinctive material shell bounded by a contact discontinuity and a
shock. The shell is now thicker than in the case with no tangen-
tial velocities (Problem 4) and the density jump is larger. We
again find that Tadmor’s scheme captures successfully the cor-
rect wave patterns, with a very high accuracy at the discontinu-
ities, due to the use of the PPM reconstruction. We note in par-
ticular that the contact discontinuity is similarly well resolved
with both schemes, HLLE and Tadmor. It is worth emphasizing
that despite the further complexity introduced by the presence
of tangential velocities, the correct value for the density of the
material shell is nevertheless computed very accurately.

5. 2-dimensional relativistic hydrodynamics

The simplicity of Tadmor’s scheme allows us to implement it in
multidimensions in a straightforward way, by using, e.g. the so-
called method of lines (see, e.g., Toro 1997). In this framework
we have considered two different tests and an astrophysical ap-
plication, namely a two-dimensional shock tube, the relativistic
version of the so-called flat-faced step test, and the propagation
of a relativistic jet. Our results can be compared directly with
those of previous authors (Donat et al. 1998; Marquina 1999;
Del Zanna & Bucciantini 2002).

Fig. 6. Tadmor’s scheme (upper panel) and HLLE (lower) in the rela-
tivistic propagation of a blast-wave with nonzero tangential velocities
at t = 0.4 using CFL = 0.5 and PPM spatial reconstruction (see Table 1
for details). Normalized profiles of density, pressure and velocity for
the computed and exact (solid lines) solutions on an equally spaced
grid of 400 zones.

5.1. Two-dimensional shock tube test

In this test the computational domain is a square of side-length
unity divided in four quadrants of equal size with constant ini-
tial states each and outflowing boundary conditions. Lax & Liu
(1998) studied the time evolution of all possible initial configu-
rations within the framework of Newtonian hydrodynamics. A
relativistic version of their particular configuration 12, where
the four boundaries define two contact discontinuities and two
shock waves, was proposed in Del Zanna & Bucciantini (2002).
We simulate the same configuration in order to compare with
their results. The initial setup is


(ρ, vx, vy, p)NE = (0.1, 0.0, 0.0, 0.01),
(ρ, vx, vy, p)NW = (0.1, 0.99, 0.0, 1.0),
(ρ, vx, vy, p)SW = (0.5, 0.0, 0.0, 1.0),
(ρ, vx, vy, p)SE = (0.1, 0.0, 0.99, 1.0).

(11)

Figure 7 shows the result we obtain using Tadmor’s scheme
with a 400 × 400 grid at time t = 0.4. We use PHM spatial re-
construction, a third order Runge-Kutta time discretization and
a CFL number of 0.5. The solution shows two curved shock
fronts evolving in the upper-right (NE) quadrant, and a more
complicated wave pattern in the lower-left (SW) quadrant. The
comparison with the results of Del Zanna & Bucciantini (2002)
(see their Fig. 6) reveals that all expected features in the wave
solution are also obtained with our central scheme. The cap-
turing of the curved shocks in the upper-right quadrant is simi-
larly well performed by both schemes. However, the elongated
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Fig. 7. Tadmor’s scheme with PHM reconstruction in a two-
dimensional shock tube test. 30 iso-contours of the logarithm of the
density are shown. t = 0.4, CFL = 0.5 and 1

∆x =
1
∆y
= 1

400 .

structure appearing along the diagonal within the two shocks
is more pronounced in our result (in closer agreement with the
Newtonian results by Lax & Liu 1998). Correspondingly, con-
cerning the wave structure in the lower-left quadrant we note
that the location and resolution of the bow shock agrees in both
schemes but the contact discontinuity and the structure in front
of the oblique shock differ, being perhaps better resolved with
our scheme.

5.2. Relativistic flat-faced step test

A challenging test for two-dimensional hydrodynamical codes
is the numerical simulation of a supersonic flow in a wind tun-
nel with a flat-faced step, a test originally introduced by Emery
(1968) to compare various schemes in classical fluid dynamics.
The initial configuration of this test is as follows: the tunnel is
three units long and one unit wide. The step is 0.2 units high
and it is located 0.6 units from the left-hand end of the tunnel.
A Mach 3 flow (Newtonian definition) is injected through the
left end of the tunnel. The whole computational domain is ini-
tially filled with an ideal gas with γ = 7/5 and constant density
ρ(x, y) = 1.4. The only non-vanishing initial velocity compo-
nent is the horizontal (x) one, which we leave as a free param-
eter in order to consider different regimes, from low Lorentz
factors up to ultrarelativistic situations. Reflecting boundary
conditions are applied along the walls of the tunnel as well as
on the boundary defined by the step. Correspondingly, outflow
(zero gradient) boundary conditions are used on the right-hand
end of the tunnel.

The corner of the step is a singular point of the flow since
it is the center of a rarefaction fan. It is well known that lin-
earized Riemann solvers need an entropy fix in the vicinity of
the corner (see Donat et al. 1998, for details) in order to mini-
mize the numerical errors generated around it which may affect
the entire flow globally. We note that central schemes such as

Fig. 8. Tadmor’s scheme with PHM reconstruction in the flat-faced
step test. 30 iso-contours of the logarithm of the density are shown.
CFL = 0.7 and 1

∆x =
1
∆y
= 1

40 . From top to bottom: vx = 0.1, 0.9, 0.99,
and 0.999, and t = 55.1, 6.0, 4.45, and 4.26.

the one we use do not need any further adjustment to pass this
test without diminishing the quality of the results.

Figure 8 plots the results obtained by Tadmor’s scheme in
a rectangular grid of 120 x-cells and 40 y-cells, using a third
order Runge-Kutta time discretization and PHM spatial recon-
struction. We note that the reconstruction is now made on the
proper velocity components of the gas (which are unbounded),
in order to avoid exceeding the speed of light during the recov-
ery of the primitive quantities. From top to bottom Fig. 8 shows
a snapshot in the evolution of the flow for the values of the ini-
tial velocity vx = 0.1, 0.9, 0.99, and 0.999. The evolution of the
fluid and the shock reflection patterns are similar to the pat-
terns found in the Newtonian case, but the bow shock moves
faster in the relativistic case, eventually leaving the computa-
tional domain, the sooner the larger the inflow velocities are.
The results obtained with Tadmor’s scheme are very satisfac-
tory, and again comparable to the ones obtained by Riemann
solver-based methods which make use of the characteristic in-
formation of the system of equations (see e.g. the correspond-
ing figures reported in Donat et al. 1998; Marquina 1999). All
special features (bow shock, rarefactions fan, etc.) are well re-
solved and correctly captured. We note that if we refine the grid
resolution we do not encounter the numerical pathologies com-
mented in Marquina (1999), as we show in Fig. 9 where a grid
of 240 x-cells and 80 y-cells was used. Note that when we use a
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Fig. 9. Tadmor’s scheme with PHM reconstruction in the flat-faced
step test. 30 iso-contours of the logarithm of the density are shown.
vx = 0.99, t = 4.5, CFL = 0.7 and 1

∆x =
1
∆y
= 1

80 .

second order spatial reconstruction such as the MC limiter (see
Toro 1997) and a second order Runge-Kutta time discretiza-
tion, the results are still acceptable, but with a lower resolution
at the discontinuities.

5.3. An astrophysical application: Propagation
of relativistic jets

The simulation of relativistic jets, a field of research that started
about a decade ago (van Putten 1993; Duncan & Hughes 1994;
Martí et al. 1994), has now reached its maturity, gradually in-
corporating more elaborate ingredients such as three dimen-
sional effects, magnetic fields, realistic equations of state, and
emission processes (see Martí & Müller 2003, and references
therein). As an example of an astrophysical application of
our central scheme we present in this section numerical sim-
ulations, using both Cartesian and cylindrical coordinates, of
the propagation of a relativistic jet in two spatial dimensions
through a homogeneus environment, and we briefly discuss the
main results. For the sake of comparison the initial data con-
sidered in our simulations are the same as those of Del Zanna
& Bucciantini (2002). Hence, a light (jet-to-ambient density
ratio, 0.01), relativistic (jet Lorentz factor, 7.1) jet with inter-
nal Mach number 17.9 (highly supersonic) is injected into a
homogeneous, static external medium. The jet and the ambi-
ent medium are in pressure equilibrium. We use an ideal gas
equation of state with γ = 5/3 to represent both jet and am-
bient medium. Reflecting boundary conditions are used at the
jet symmetry axis and a combination of outflow and reflection
conditions at the boundary above the jet inlet (at the left cor-
ner of the numerical grid). Pure outflow boundary conditions
are imposed in the remaining boundaries. The simulations are
performed with a resolution of 20 cells per jet radius and with
a CFL of 0.3.

Figure 10 shows a series of snapshots of the rest mass den-
sity distribution covering the evolution of the jet up to t = 80.
This simulation is performed using cylindrical coordinates (r, z)
to discretize the computational domain, which is 45 units long
in the z-direction and 25 units wide in the r-direction. All struc-
tural features usually appearing in jet simulations are clearly
identified in this figure. A supersonic beam extends from the
jet nozzle to the point of impact on the ambient medium. At
that point the jet ends in a complex structure formed by a ter-
minal planar shock (Mach shock), a contact discontinuity sep-
arating the jet material from the shocked ambient medium,
and a bow shock. This shock forms due to the supersonic

Fig. 10. Tadmor’s scheme with PPM reconstruction in a relativistic jet
simulation. Snapshots of the rest mass density distribution (in loga-
rithmic scale) show, from top to bottom, the propagation of the jet at
t = 20, 40, 60, 80. In the last snapshot, the terminal shock, the con-
tact discontinuity and the bow shock are found at z = 29.0, 31.2, 32.6,
respectively.

propagation of the jet with respect to the ambient medium, al-
lowing the jet to evolve in a cavity of hotter and lighter shocked
ambient material. Finally, the beam material which stops at
the jet end forms a cocoon surrounding the beam. The coccon
is separated from the shocked ambient medium by a contact
discontinuity in which Kelvin-Helmholtz instabilities develop.
The velocity of advance of the jet in the ambient medium is
governed by the balance of momentum at the jet/ambient im-
pact region (see, e.g., Marti et al. 1997). For the jet under con-
sideration a theoretical advance speed of 0.44 is expected (to be
compared with a mean speed of 0.38 found in the simulation).
The lateral expansion of the cavity as well as the evolution of
pressure and density follows the theoretical model of Begelman
& Ciofi (1989) with good accuracy.

Note the absence of a carbuncle ahead of the bow shock in
the simulations reported in Fig. 10. The carbuncle is a numer-
ical pathology well known from blunt body simulations in su-
personic gas dynamics, which manifests itself in the form of a
small unphysical protuberance in front of the bow shock. In this
regard Tadmor’s scheme is able to cleanly resolve (carbuncle-
free) the leading bow shock in the jet with an accuracy com-
parable to that of more sophisticated Godunov-type schemes
such as Marquina, and clearly superior to that of Roe-type
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Fig. 11. Tadmor’s scheme with PPM reconstruction in a relativistic
jet simulation. Rest mass density distribution (in logarithmic scale) at
t = 100 for cylindrical (top panel) and planar (bottom panel) jets.

approximate solvers, which sometimes admit this kind of spu-
rious solution as shown in Donat et al. (1998).

Figure 11 shows the last computed time of our model
(t = 100) in 2D cylindrical and planar coordinates. The mor-
phological elements found in both cases are similar as well
as the dynamics governing the jet propagation. The change in
geometry is responsible for the different aspect of the cavity
(more elongated in the case of the cylindrical jet).

6. Quantitative comparison

In this section we present a quantitative comparison be-
tween Tadmor’s scheme and the HRSC methods based on

Table 2. Errors in the shock tube problems 3 and 6 for HLLE and
Roe’s approximate Riemann solvers, and Tadmor’s central scheme us-
ing two different third order spatial reconstructions (CFL = 0.5 and
Nx = 400).

Test Scheme L1 (10−2) L∞ (10−3)

PPM PHM PPM PHM

Problem 3 HLLE 3.37 2.81 2.87 0.67

Roe 3.39 2.95 3.44 1.31

Tadmor 3.41 3.41 2.58 1.04

Problem 6 HLLE 22.0 21.7 3.53 1.20

Roe 21.7 21.6 2.63 1.20

Tadmor 25.2 22.4 0.92 2.69

(approximate) Riemann solvers we have used. To this aim we
first compare the numerical and analytic solutions, and show
the errors of the various methods for the shock tube problem 3
and problem 6 (propagation of a blast wave with non-zero tan-
gential velocities). We also show in each case the CPU time
per numerical cell and iteration (TCI) in order to highlight the
computational efficiency of our central scheme.

The results of the comparison are shown in Table 2.
This table reports the L1 and L∞ norms for the density for
Tadmor’s scheme, HLLE, and Roe’s approximate Riemann
solvers. Results for both spatial reconstruction procedures
(PPM and PHM) are also included. The L1 norm errors are
computed considering the entire computational domain, while
the L∞ errors refer only to the part of the grid where the solution
is smooth (i.e. the rarefaction wave). The largest errors occur
in the postshock region. From this table we can quantify and
confirm the quality of the results shown in the corresponding
figures, i.e. that Tadmor’s scheme has an accuracy comparable
to that of Riemann solvers based HRSC methods.

Correspondingly, Table 3 displays the TCI for Tadmor’s
scheme and Marquina’s flux formula, which allows us to check
their computational efficiency. We note first that when writing
the numerical code we did not take special care in optimization
other than in its most apparent aspects. Therefore, the num-
bers displayed in Table 3 have to be taken as approximate num-
bers for a standard implementation of a hydrodynamics code,
amenable to being improved under code optimization. From
this table we can see that Tadmor’s scheme, as expected, con-
sumes less time than a method based on the characteristic struc-
ture of the equations, roughly a factor of 2 for one-dimensional
problems, a factor 4 for problem 6 where tangential flow veloc-
ities are also involved in the computation, and a factor 3 for a
two-dimensional problem (namely, the flat-faced step test).

Some additional comments are in order: firstly, the TCI
for Tadmor’s scheme remains essentially unchanged when go-
ing from 1D to 1.5D (from 8.0 µs to 8.8 µs), which indi-
cates the negligible impact of the computation of the numer-
ical flux on the overall number of operations in the code.
Correspondingly, the factor of two difference in Marquina’s
flux formula (from 17.0 µs to 32.4 µs) is consistent with the
large relative weight of the numerical flux step in the overall
computation in this algorithm (notice, in particular, that the
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Table 3. CPU time per numerical cell and iteration for Tadmor’s cen-
tral scheme and Marquina’s flux formula for the different regimes con-
sidered in the text, using third order schemes for the cell reconstruction
and time update.

TCI (µs)

Case # Zones Marquina Tadmor

1D 400 × 1 × 1 17.0 8.0

1.5D 400 × 1 × 1 32.4 8.8

2D 120 × 40 × 1 72.1 22.7

Table 4. L1 norm errors of the density and convergence rate (r) under
grid refinement for problem 4 at t = 0.4. Results for three schemes
(Marquina, HLLE, and Tadmor) and two reconstruction procedures
(PPM and PHM) are shown.

Scheme N L1(10−2) r

PPM PHM PPM PHM
Marquina 50 14.8 23.2 – –

100 21.0 18.5 –0.50 0.30
200 16.1 15.1 0.38 0.32
400 8.99 11.4 0.84 0.41
800 4.22 7.22 1.09 0.66

1600 2.22 3.87 0.93 0.90
3200 1.04 2.06 1.09 0.91

HLLE 50 14.8 23.3 – –
100 20.9 17.0 –0.50 0.29
200 16.1 15.1 0.38 0.33
400 8.99 11.4 0.84 0.41
800 4.22 7.22 1.09 0.66

1600 2.22 3.87 0.93 0.90
3200 1.04 2.06 1.09 0.91

Tadmor 50 14.7 23.6 – –
100 20.7 19.1 –0.49 0.30
200 16.0 15.2 0.37 0.33
400 8.94 11.0 0.84 0.47
800 4.19 7.26 1.09 0.60

1600 2.21 3.89 0.92 0.90
3200 1.04 2.07 1.09 0.91

numerical viscosity matrix changes its dimension from 3 × 3
to 5 × 5). Secondly, when going from 1.5D to 2D the TCI
in Marquina’s scheme increases by roughly a factor 2.2, while
this factor is of the order of 2.5 in the case of Tadmor. A fac-
tor two can be easily understood because of the presence of
the additional dimension in the code, which implies an addi-
tional “sweep” in the corresponding spatial dimension, the cell
reconstruction and the numerical flux computation also being
computed twice. This factor can be further modified by adding
and subtracting two less important factors, namely the access to
memory (which is slower as the arrays are larger) and the time
update and recovery procedure which are done simultaneously
for the two spatial dimensions.

Finally, we show in Table 4 the errors of the density un-
der grid refinement using the discrete L1 norm. The results re-
ported in this table correspond to problem 4 at t = 0.4, and they

Fig. 12. L1 norm errors of the density under grid refinement for prob-
lem 4 at t = 0.4. Open (respectively, filled) symbols correspond
to results obtained with PPM (respectively, PHM). Results for three
schemes (Marquina (squares), HLLE (circles), and Tadmor (trian-
gles)) are shown. For a given grid resolution the accuracy of the so-
lution shows no dependence on the numerical scheme and a strong
dependence on the cell-reconstruction.

allow a comparison of the various schemes (Marquina, HLLE,
and Tadmor) and reconstruction procedures (PPM and PHM).
The last two columns of the table indicate the convergence rate
of the method. As the grid is refined it can be seen that the
convergence rate reaches an order of accuracy of roughly one.
This is the expected value for problems where discontinuities
are present. Furthermore, our result is also in very good agree-
ment with the results of Martí & Müller (1996) where a rel-
ativistic extension of PPM was used in conjunction with the
exact Riemann solver (see their Table IV).

Two important conclusions can be drawn from Table 4:
firstly, the transition to the converged solution is faster with
PPM than with PHM, especially for grid resolutions finer
than 1/400. The corresponding L1 norm errors are also system-
atically smaller when using the PPM cell-reconstruction rou-
tines, roughly a factor of two better than PHM when the number
of zones is ≥400. Secondly, both the convergence rate and the
errors are pretty much independent of the scheme (Marquina,
HLLE, or Tadmor), and irrespective of the grid resolution em-
ployed. This result indicates that for a given scheme (either
upwind or central) written in conservation form, it is the re-
construction what greatly helps to gain accuracy. These con-
clusions can also be inferred from Fig. 12 which shows the
convergence rate on a logarithmic scale. It should however be
stressed that this result applies to the specific test we have con-
sidered (problem 4), for which the wave structure of the solu-
tion is particularly simple and the errors are dominated by the
presence of discontinuities. It remains to be seen if our conclu-
sion still holds in multidimensional problems involving more
complex flows and wave interactions (not necessarily aligned
with the computational grid) as those appearing, for instance,
when astrophysical jets are simulated.
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7. Summary

In this paper we have assessed the validity of a particular finite-
difference central scheme in conservation form developed by
Kurganov & Tadmor (2000), for the solution of the relativis-
tic hydrodynamic equations. The computations have been re-
stricted to one and two spatial dimensions in flat spacetime.
Standard numerical experiments such as shock tubes, the shock
reflection test, and the relativistic version of the flat-faced step
test have been performed. As an astrophysical application of
the central scheme we use we have presented two-dimensional
simulations of the propagation of relativistic jets using both
Cartesian and cylindrical coordinates. The simulations have
shown the capabilities of Tadmor’s scheme of yielding satisfac-
tory results, comparable to those obtained by HRSC schemes
based on Riemann solvers, even well inside the ultrarelativis-
tic regime. We have proposed to use high-order reconstruction
procedures such as those provided by the PPM scheme (Colella
& Woodward 1984) and the PHM scheme (Marquina 1999).
This is essential for keeping the inherent diffusion of central
schemes at discontinuities at reasonably low levels.

The novelty of our approach (shared by recent earlier works
in the literature, Del Zanna & Bucciantini 2002; Anninos &
Fragile 2003) lies in the absence of Riemann solvers in the so-
lution procedure. Earlier pioneer approaches in the field of rela-
tivistic hydrodynamics (Norman & Winkler 1986; Centrella &
Wilson 1984) used standard finite-difference schemes in con-
junction with artificial viscosity terms to stabilize the solution
across discontinuities. Those approaches, however, only suc-
ceeded in obtaining accurate results for moderate values of the
Lorentz factor (W ∼ 2). A key feature lacking in those ear-
lier investigations was writing the system of equations and the
numerical scheme in conservation form. In the light of our find-
ings, and in addition, of the recent results reported by Anninos
& Fragile (2003) where artificial techniques have also been
considered in tandem with central schemes, it appears that this
was the ultimate reason preventing the extension of the compu-
tations to the ultrarelativistic regime.

The use of high-order central schemes for nonlinear hy-
perbolic systems of conservation laws has been increasing in
recent years since the seminal work in the second half of the
1980s (Davis 1984; Roe 1984; Yee 1987; Nessyahu & Tadmor
1990). Anile and coworkers (Anile et al. 2000) applied the
central scheme SLIC in the context of the time-dependent
hydrodynamical semiconductor equations, obtaining satisfac-
tory results for a system whose characteristic information is
not available. In the context of special and general relativistic
MHD Koide et al. (1996, 1998) applied a second-order central
scheme with nonlinear dissipation developed by Davis (1984)
to the study of relativistic extragalactic jets and black hole ac-
cretion. This scheme has been lately applied by Mizuno et al.
(2003) in general relativistic MHD simulations of the gravita-
tional collapse of a magnetized rotating massive star as a model
of gamma ray bursts. Also recently Del Zanna & Bucciantini
(2002) and Anninos & Fragile (2003) assessed two different
high-order central schemes in relativistic hydrodynamics, ob-
taining results as accurate as those of upwind HRSC schemes
in standard tests.

The theoretical knowledge of the characteristic information
of any hyperbolic system of equations is the key ingredient
guiding the construction of HRSC upwind schemes. The dif-
ferent Riemann solvers available in the literature, either exact
or approximate (see Martí & Müller 2003, for an up-to-date list
in relativistic hydrodynamics), all use the eigenvalues (charac-
teristic speeds) and/or the eigenvectors (characteristic fields) of
the Jacobian matrices of the system in the solution procedure.
Such solvers provide a minute amount of diffusion across dis-
continuities while at the same time they capture the jumps in a
self-consistent way thanks to the implicit use of the Rankine-
Hugoniot jump conditions (the so-called shock-capturing prop-
erty). Having such information available is also very important
for imposing boundary conditions in regions where a priori
there could exist some ambiguity. The knowledge of the be-
havior of the characteristic speeds and, therefore, the local di-
rectionality of the flow, greatly simplifies this task.

Needless to say, the alternative of using high-order cen-
tral schemes like the one discussed here instead of upwind
HRSC schemes becomes apparent when the spectral decom-
position of the hyperbolic system under consideration is not
known. The straightforwardness of a central scheme makes its
use very appealing, especially in multi-dimensions where com-
putational efficiency is an issue. Perhaps the most important
example in relativistic astrophysics is the system of (general)
relativistic magnetohydrodynamic equations. Despite some re-
cent progress having been made in recent years (Romero et al.
1997; Balsara 2001; Komissarov 1999), much more work is
certainly needed concerning their solution with HRSC schemes
based upon Riemann solvers. Meanwhile, an obvious choice is
the use of central schemes.
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